Machine Learning Methods for Numerical Solutions of Partial Differential Equations

Julia Costacurta, Cameron Martin, Hongyuan Zhang Supervisors: Adam Stinchcombe and Mihai Nica August 28, 2019

Fields Undergraduate Summer Research Program

Goal: Find numerical solution to (possibly high dimensional) PDE problem with irregular boundary.

Example PDE Problem:

 $\Delta u = 0$ on Ω

with $u|_{\partial\Omega} = g$ (Dirichlet boundary conditions).

Traditional Numerical Methods

- $\Delta u = 0, u|_{\partial \Omega} = g \leftrightarrow Av = b$
- Challenging to grid domain we want a grid-free method

How do we make a grid-free method?

Connection between PDE and Brownian Motion

How do we make a grid-free method?

By exploiting a relationship between PDEs and Brownian motions, we can derive an expression for the solution to our PDE that depends on some Brownian motion X_t .

What is a Brownian motion?

Connection between PDE and Brownian Motion

Monte Carlo method – average value of $u(X_T)$ for a large number of walkers

Problem: Given data (x_i, y_i)_{1≤i≤N} find a function u(x) such that u(x_i) = y_i for all i.

- Problem: Given data (x_i, y_i)_{1≤i≤N} find a function u(x) such that u(x_i) = y_i for all i.
- Example: $x_i \in \mathbb{R}^{784}$ pixels in an image, $y_i \in \{0, 1\}$ is it a cat? Find $u : \mathbb{R}^{784} \longrightarrow \{0, 1\}$ such that

- Problem: Given data (x_i, y_i)_{1≤i≤N} find a function u(x) such that u(x_i) = y_i for all i.
- Example: $x_i \in \mathbb{R}^{784}$ pixels in an image, $y_i \in \{0, 1\}$ is it a cat? Find $u : \mathbb{R}^{784} \longrightarrow \{0, 1\}$ such that

Figure 1: A cat

Figure 2: Not a cat

- Problem: Given data (x_i, y_i)_{1≤i≤N} find a function u(x) such that u(x_i) = y_i for all i.
- Example: $x_i \in \mathbb{R}^{784}$ pixels in an image, $y_i \in \{0, 1\}$ is it a cat? Find $u : \mathbb{R}^{784} \longrightarrow \{0, 1\}$ such that

Figure 1: A cat

Figure 2: Not a cat

- Problem: Given data (x_i, y_i)_{1≤i≤N} find a function u(x) such that u(x_i) = y_i for all i.
- Example: $x_i \in \mathbb{R}^{784}$ pixels in an image, $y_i \in \{0, 1\}$ is it a cat? Find $u : \mathbb{R}^{784} \longrightarrow \{0, 1\}$ such that $u(x_i) = y_i = \begin{cases} 0, & \text{image } x_i \text{ is not a cat} \\ 1, & \text{image } x_i \text{ is a cat} \end{cases}$

- Problem: Given data $(x_i, y_i)_{1 \le i \le N}$ find a function u(x) such that $u(x_i) = y_i$ for all *i*.
- Example: $x_i \in \mathbb{R}^{784}$ pixels in an image, $y_i \in \{0, 1\}$ is it a cat? Find $u : \mathbb{R}^{784} \longrightarrow \{0, 1\}$ such that $u(x_i) = y_i = \begin{cases} 0, & \text{image } x_i \text{ is not a cat} \\ 1, & \text{image } x_i \text{ is a cat} \end{cases}$
- Strategy:
 - 1. Have $u = u_{\theta}$ depend on parameters $\theta = \{\theta_1, \theta_2, \dots, \theta_n\}$ (e.g. $u_{\theta}(x) = \theta_1 x + \theta_0$)
 - 2. Define a "loss function" of these parameters and minimize it.

A loss function is a function of the parameters θ₁,..., θ_n that tells you "how bad" the function approximation is on the data set, e.g.

A loss function is a function of the parameters θ₁,..., θ_n that tells you "how bad" the function approximation is on the data set, e.g.

$$L(\theta_1, \theta_2, \dots, \theta_n) = \frac{1}{N} \sum_{i=1}^N (y_i - u_\theta(x_i))^2$$

A loss function is a function of the parameters θ₁,..., θ_n that tells you "how bad" the function approximation is on the data set, e.g.

$$L(\theta_1, \theta_2, \dots, \theta_n) = \frac{1}{N} \sum_{i=1}^N (y_i - u_\theta(x_i))^2$$

• How do we minimize L? Gradient descent!

A loss function is a function of the parameters θ₁,..., θ_n that tells you "how bad" the function approximation is on the data set, e.g.

$$L(\theta_1, \theta_2, \dots, \theta_n) = \frac{1}{N} \sum_{i=1}^N (y_i - u_\theta(x_i))^2$$

- How do we minimize L? Gradient descent!
- Compute gradient of loss function:

$$abla_{\theta}L = \begin{pmatrix} \frac{\partial L}{\partial \theta_1}, & \frac{\partial L}{\partial \theta_2}, & \dots, & \frac{\partial L}{\partial \theta_n} \end{pmatrix}^T$$

A loss function is a function of the parameters θ₁,..., θ_n that tells you "how bad" the function approximation is on the data set, e.g.

$$L(\theta_1, \theta_2, \dots, \theta_n) = \frac{1}{N} \sum_{i=1}^N (y_i - u_\theta(x_i))^2$$

- How do we minimize L? Gradient descent!
- Compute gradient of loss function:

$$abla_{ heta} L = \left(rac{\partial L}{\partial heta_1}, \quad rac{\partial L}{\partial heta_2}, \quad \dots, \quad rac{\partial L}{\partial heta_n}
ight)^T.$$

Update parameters and iterate

$$\theta_i \leftarrow \theta_i - \alpha \frac{\partial L}{\partial \theta_i}$$

• α is called the **learning rate**

• Perform linear regression on a set of data points (x_i, y_i)

- Perform linear regression on a set of data points (x_i, y_i)
- Choose function form $u_{\theta}(x) = mx + b$

- Perform linear regression on a set of data points (x_i, y_i)
- Choose function form $u_{\theta}(x) = mx + b$
- Start with random guesses for m, b

Putting the Pieces Together

• We want to use $L(\theta) = \frac{1}{N} \sum_{i=1}^{N} (u(x_i) - u_{\theta}(x_i))^2$, but we don't know u

- We want to use $L(\theta) = \frac{1}{N} \sum_{i=1}^{N} (u(x_i) u_{\theta}(x_i))^2$, but we don't know u
- Solution: use Feynman-Kac formula

$$u(x) = \mathbf{E} [u(X_T) | X_0 = x]$$

$$L(\theta) = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{E} [u(X_{\Delta t}) | X_0 = x_i] - u_{\theta}(x_i))^2$$

approximate this expectation value with a random sample to get new loss

- We want to use $L(\theta) = \frac{1}{N} \sum_{i=1}^{N} (u(x_i) u_{\theta}(x_i))^2$, but we don't know u
- Solution: use Feynman-Kac formula

$$u(x) = \mathbf{E} [u(X_T)|X_0 = x]$$

$$L(\theta) = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{E} [u(X_{\Delta t})|X_0 = x_i] - u_{\theta}(x_i))^2$$

approximate this expectation value with a random sample to get new loss

$$L_{\text{new}}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \left(u_{\theta}(X_{\Delta t}^{(i)}) - u_{\theta}(X_{0}) \right)^{2}$$

$$L_{\text{new}}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \left(u_{\theta}(X_{\Delta t}^{(i)}) - u_{\theta}(X_0) \right)^2$$

$$L_{\text{new}}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \left(u_{\theta}(X_{\Delta t}^{(i)}) - u_{\theta}(X_0) \right)^2$$

- We replaced the expectation value $\mathbf{E}\left[u(X_{\varDelta t})|X_0=x_i\right]$ with $u_{\theta}(X_{\varDelta t}^{(i)})$

$$L_{\text{new}}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \left(u_{\theta}(X_{\Delta t}^{(i)}) - u_{\theta}(X_0) \right)^2$$

- We replaced the expectation value $\mathbf{E}\left[u(X_{\varDelta t})|X_0=x_i\right]$ with $u_{\theta}(X_{\varDelta t}^{(i)})$
- $u_{\theta}(X_{\Delta t}^{(i)})$ is our data (analogous to y_i from intro to ML), generated by the random process X_t .

$$L_{\text{new}}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \left(u_{\theta}(X_{\Delta t}^{(i)}) - u_{\theta}(X_0) \right)^2$$

- We replaced the expectation value $\mathbf{E}\left[u(X_{\varDelta t})|X_0=x_i\right]$ with $u_{\theta}(X_{\varDelta t}^{(i)})$
- $u_{\theta}(X_{\Delta t}^{(i)})$ is our data (analogous to y_i from intro to ML), generated by the random process X_t .
- $\nabla_{\theta}L \approx \nabla_{\theta}L_{new}$, so gradient descent still works!

Loss Function Example

Applying the New Loss Function

• Problem:

$$u'' + u' - u = 2\pi \cos(2\pi x) - \left(1 + (2\pi)^2\right) \sin(2\pi x),$$

$$x \in [0, 1], u(0) = u(1) = 0$$

Applying the New Loss Function

• Problem:

$$u'' + u' - u = 2\pi \cos(2\pi x) - \left(1 + (2\pi)^2\right) \sin(2\pi x),$$

$$x \in [0, 1], u(0) = u(1) = 0$$

• Analytic solution: $u(x) = \sin(2\pi x)$

• Problem:

$$u'' + u' - u = 2\pi \cos(2\pi x) - \left(1 + (2\pi)^2\right) \sin(2\pi x),$$

 $x \in [0, 1], u(0) = u(1) = 0$

- Analytic solution: $u(x) = \sin(2\pi x)$
- Can write function approximation as finite linear combination of polynomials

$$u_{\theta}(x) = \sum_{k=0}^{6} \theta_k x^k.$$

• Problem:

$$u'' + u' - u = 2\pi \cos(2\pi x) - \left(1 + (2\pi)^2\right) \sin(2\pi x),$$

 $x \in [0, 1], u(0) = u(1) = 0$

- Analytic solution: $u(x) = \sin(2\pi x)$
- Can write function approximation as finite linear combination of polynomials

$$u_{\theta}(x) = \sum_{k=0}^{6} \theta_k x^k.$$

• Using the modified loss function,

$$\frac{\partial L}{\partial \theta_k} = \frac{1}{N} \sum_{i=1}^N -2x_i^k \left(u_\theta(X_{\Delta t}^{(i)}) - u_\theta(x_i) \right)$$

An Example - 1D Value Function Approximation

• Update rule:
$$\theta_k \leftarrow \theta_k + \alpha \frac{1}{N} \sum_{i=1}^N 2x_i^k \left(u_{\theta}(X_{\Delta t}^{(i)}) - u_{\theta}(x_i) \right)$$

An Example - 1D Value Function Approximation

• Update rule:
$$\theta_k \leftarrow \theta_k + \alpha \frac{1}{N} \sum_{i=1}^N 2x_i^k \left(u_\theta(X_{\Delta t}^{(i)}) - u_\theta(x_i) \right)$$

Key point: loss function makes no reference to solution! We approximate solution using only randomly generated data.

Machine Learning with Artificial Neural Networks

Figure 3: ANN Example

A neural network is a compositional function that depends on parameters (weights and biases).

An Example: Cell Battery

PDE: $\Delta u = 0$ on a unit square (representing a battery). u(x, y) is the voltage, which jumps when entering/exiting a cell due to negative resting potential within the cell. Loss function:

$$\begin{split} L(\theta) &= \frac{1}{N} \sum_{i=1}^{N} \left(u_{\theta}(X_{\Delta t}^{(i)}) - u_{\theta}(X_{0}^{(i)}) - VoltChange(X^{(i)}) \right)^{2} \\ &+ \frac{1}{M} BdryWeight \sum_{i=1}^{M} \left(g(P^{(i)}) - u_{\theta}(P^{(i)}) \right)^{2} \end{split}$$

where P are points on boundary and BdryWeight is boundary weight, a constant.

To approximate real solution, minimize loss by updating θ (weights and biases) via gradient descent.

Numerical Results

Summary

	Finite Difference	Monte Carlo	ML w/ Basis Fns	ML w/ ANN
Solves for solution at	Grid of points	One point	Every point	Every point
Gains information	All at once	After all walkers finish	At every step of walkers	At every step of walkers
Requires basis?	No basis functions	No basis functions	Need to choose basis functions	No basis functions
Best for	Simple boundaries, low dimensions	Complex boundaries, sol. at single point	Complex boundaries, high dimensions, know good basis	Complex boundaries, high dimensions, don't know basis

Thank you!

Figure 4: Our Team