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Introduction to Problem

Goal: Find numerical solution to (possibly high dimensional)
PDE problem with irregular boundary.

Example PDE Problem:

∆u = 0 on Ω

with u|∂Ω = g (Dirichlet boundary conditions).
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Traditional Numerical Methods

• ∆u = 0, u|∂Ω = g ↔ Av = b

• Challenging to grid domain - we want a grid-free method
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How do we make a grid-free
method?



Connection between PDE and Brownian Motion

How do we make a grid-free method?

= 0 ↔ �( ) = �[�( )| = ]��� �⃗ 0 �� �0 �0

Feynman-Kac Formula

By exploiting a relationship between PDEs and Brownian
motions, we can derive an expression for the solution to our
PDE that depends on some Brownian motion Xt.
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What is a Brownian motion?
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Connection between PDE and Brownian Motion

= 0 ↔ �( ) = �[�( )| = ]��� �⃗ 0 �� �0 �0
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Monte Carlo method – average value of u(XT ) for a large
number of walkers 6



Machine Learning in Three Slides



Machine Learning (ML) in Three Slides

• Problem: Given data (xi, yi)1≤i≤N find a function u(x) such
that u(xi) = yi for all i.

• Example: xi ∈ R784 - pixels in an image, yi ∈ {0, 1} - is it a
cat? Find u : R784 −→ {0, 1} such that

Figure 1: A cat Figure 2: Not a cat
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Machine Learning (ML) in Three Slides

• Problem: Given data (xi, yi)1≤i≤N find a function u(x) such
that u(xi) = yi for all i.

• Example: xi ∈ R784 - pixels in an image, yi ∈ {0, 1} - is it a
cat? Find u : R784 −→ {0, 1} such that

u(xi) = yi =

0, image xi is not a cat

1, image xi is a cat

• Strategy:

1. Have u = uθ depend on parameters θ = {θ1, θ2, . . . , θn}
(e.g. uθ(x) = θ1x+ θ0)

2. Define a “loss function” of these parameters and minimize
it.
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ML in Three Slides: Minimizing Loss with Gradient Descent

• A loss function is a function of the parameters θ1, . . . , θn
that tells you “how bad” the function approximation is on
the data set, e.g.

L(θ1, θ2, . . . , θn) =
1

N

N∑
i=1

(yi − uθ(xi))2

• How do we minimize L? Gradient descent!
• Compute gradient of loss function:

∇θL =
(
∂L
∂θ1

, ∂L
∂θ2

, . . . , ∂L
∂θn

)T
.

• Update parameters and iterate

θi ← θi − α
∂L

∂θi

• α is called the learning rate
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ML in Three Slides: An Elementary Example

• Perform linear regression on a set of data points (xi, yi)

• Choose function form uθ(x) = mx+ b

• Start with random guesses for m, b
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Putting the Pieces Together



A New Loss Function

• We want to use L(θ) = 1
N

N∑
i=1

(u(xi)− uθ(xi))2, but we

don’t know u

• Solution: use Feynman-Kac formula
u(x) = E [u(XT )|X0 = x]

L(θ) =
1

N

N∑
i=1

(E [u(X∆t)|X0 = xi]− uθ(xi))2

• approximate this expectation value with a random sample
to get new loss

Lnew(θ) =
1

N

N∑
i=1

(
uθ(X

(i)
∆t)− uθ(X0)

)2
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A New Loss Function

Lnew(θ) =
1

N

N∑
i=1

(
uθ(X

(i)
∆t)− uθ(X0)

)2

• We replaced the expectation value E [u(X∆t)|X0 = xi] with
uθ(X

(i)
∆t)

• uθ(X
(i)
∆t) is our data (analogous to yi from intro to ML),

generated by the random process Xt.

• ∇θL ≈ ∇θLnew, so gradient descent still works!
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Loss Function Example



Applying the New Loss Function

• Problem:
u′′ + u′ − u = 2π cos (2πx)−

(
1 + (2π)2

)
sin (2πx),

x ∈ [0, 1], u(0) = u(1) = 0

• Analytic solution: u(x) = sin (2πx)

• Can write function approximation as finite linear
combination of polynomials

uθ(x) =

6∑
k=0

θkx
k.

• Using the modified loss function,

∂L

∂θk
=

1

N

N∑
i=1

−2xki
(
uθ(X

(i)
∆t)− uθ(xi)

)
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An Example - 1D Value Function Approximation

• Update rule: θk ← θk + α 1
N

N∑
i=1

2xki

(
uθ(X

(i)
∆t)− uθ(xi)

)

Key point: loss function makes no reference to solution! We
approximate solution using only randomly generated data.
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Machine Learning with Artificial Neural Networks

Figure 3: ANN Example

A neural network is a compositional function that depends on
parameters (weights and biases).

15



An Example: Cell Battery

-0.5 mV

-0.8 mV

-0.5 mV

-0.3 mV

-1 mV

-1 mV

PDE: ∆u = 0 on a unit square (representing a battery).
u(x, y) is the voltage, which jumps when entering/exiting a cell
due to negative resting potential within the cell. 16



Method and Implementation

Loss function:

L(θ) =
1

N

N∑
i=1

(
uθ(X

(i)
∆t)− uθ(X

(i)
0 )− V oltChange(X(i))

)2
+

1

M
BdryWeight

M∑
i=1

(
g(P (i))− uθ(P (i))

)2
where P are points on boundary and BdryWeight is boundary
weight, a constant.

To approximate real solution, minimize loss by updating θ
(weights and biases) via gradient descent.
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Numerical Results
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Summary



Summary
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Thank you!

Figure 4: Our Team
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