Machine Learning Methods for Numerical
Solutions of Partial Differential Equations

Julia Costacurta, Cameron Martin, Hongyuan Zhang
Supervisors: Adam Stinchcombe and Mihai Nica

August 28, 2019

Fields Undergraduate Summer Research Program



Introduction to Problem

Goal: Find numerical solution to (possibly high dimensional)
PDE problem with irregular boundary.

Example PDE Problem:
Au=0o0n {2

with u|s, = g (Dirichlet boundary conditions).



Traditional Numerical Methods

Solve PDE Au = O/_\V
on domain Q with boundary data u|y, = g
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o Au=0,ulpp =g« Av=">
e Challenging to grid domain - we want a grid-free method



How do we make a grid-free
method?




Connection between PDE and Brownian Motion

How do we make a grid-free method?

Feynman-Kac Formula

L txx = 0 uZo) = E[u(X7)| Xo = xo]|

R e

By exploiting a relationship between PDEs and Brownian
motions, we can derive an expression for the solution to our
PDE that depends on some Brownian motion X;.
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Connection between PDE and Brownian Motion

Uy = 0 o u(Xo) = E[u(X71)|Xo = xo]

Monte Carlo method — average value of u(X) for a large
number of walkers 6



Machine Learning in Three Slides




Machine Learning (ML) in Three Slides

e Problem: Given data (z;, v;)1<i<n find a function u(x) such
that u(x;) = y; for all 4.
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Machine Learning (ML) in Three Slides
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that u(x;) = y; for all 4.
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1, image z; is a cat



Machine Learning (ML) in Three Slides

e Problem: Given data (z;, v;)1<i<n find a function u(x) such
that u(x;) = y; for all 4.

e Example: z; € R™* - pixels in an image, y; € {0,1} -isita
cat? Find v : R™ — {0, 1} such that

0, image z; is not a cat
w(x;) =y = _ _
1, image z; is a cat

e Strategy:
1. Have u = uy depend on parameters 6 = {61,65,...,0,}
(.9 ug(z) = b1z + o)
2. Define a “loss function” of these parameters and minimize
it.
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ML in Three Slides: Minimizing Loss with Gradient Descent

¢ Aloss function is a function of the parameters 64, ...,0,
that tells you “how bad” the function approximation is on
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N

1
L(017927 s 7971) = N Z (y’L - u@(l‘i))2
i=1

e How do we minimize L? Gradient descent!
e Compute gradient of loss function:

T
_ (9oL oL oL
ng - (%’ 8_927 ey —) .



ML in Three Slides: Minimizing Loss with Gradient Descent

¢ Aloss function is a function of the parameters 64, ...,0,
that tells you “how bad” the function approximation is on
the data set, e.g.
N

1
L(017927 s 7971) = N Z (y’L - u@(l‘i))2
i=1

How do we minimize L? Gradient descent!
Compute gradient of loss function:

T
_ (oL oL oL
ng - (%’ 6_027 ey m) .

Update parameters and iterate
oL

« is called the learning rate



ML in Three Slides: An Elementary Example

iteration 0, loss = 1.555
—— m=-0.157, b =-0.510

10
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ML in Three Slides: An Elementary Example

e Perform linear regression on a set of data points (x;, ;)
e Choose function form ug(z) = mz +b
e Start with random guesses for m, b

iteration 0, loss = 1.555
—— m=-0.157, b =-0.510

10



Putting the Pieces Together




A New Loss Function

e We wantto use L(f) = %

7

(u(x;) — ug(x;))?, but we

M=

1

don’t know u
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e Solution: use Feynman-Kac formula
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e approximate this expectation value with a random sample
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A New Loss Function

o We wantto use L(0) = £ 3 (u(x;) — up(;))?, but we

M=

1

7

don’t know u

e Solution: use Feynman-Kac formula
u(z) = E [u(X7)|Xo = 2]

= Z u(Xa¢)| Xo = zi] — ug(x;))?

e approximate this expectation value with a random sample
to get new loss

Lew () = %i ( - Ue(Xo))2

11



A New Loss Function

12



A New Loss Function

N

Lnew(8) = 1 3 (wa(X5) ~ wo(X0))

=1

2

e We replaced the expectation value E [u(X a;)| Xo = x;] with
ug(X5))

12



A New Loss Function

N

Lnew(e) = %Z (UO(XX)) - UG(X0)>

=1

2

o We replaced the expectation value E [u(X a;)| Xo = ;] with
up(X33)

. ug(X(Aig) is our data (analogous to y; from intro to ML),
generated by the random process X;.
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A New Loss Function

N

Lnew(e) = %Z (UO(XX)) - UG(X0)>

=1

2

o We replaced the expectation value E [u(X a;)| Xo = ;] with
up(X33)

. ug(X(Aig) is our data (analogous to y; from intro to ML),
generated by the random process X;.

o VyL =~ VyLyew, SO gradient descent still works!

12



Loss Function Example




Applying the New Loss Function

e Problem:
w4+ v —u=2mcos (2rx) — (1 + (277)2> sin (27x),
z €[0,1],u(0) =u(l) =0
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Applying the New Loss Function

e Problem:
w4+ v —u=2mcos (2rx) — (1 + (277)2> sin (27x),
z €[0,1],u(0) =u(l) =0

¢ Analytic solution: u(z) = sin (27x)

e Can write function approximation as finite linear
combination of polynomials

6
ug(z) = Z Opz®.
k=0
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Applying the New Loss Function

e Problem:
u’ +u' —u = 2mcos (2mx) — (1 + (277)2> sin (27z),
z €[0,1],u(0) =u(l) =0

¢ Analytic solution: u(z) = sin (27x)

e Can write function approximation as finite linear
combination of polynomials

6
= Z kak
k=0
e Using the modified loss function,
8_919 = — Z —2zF (u.g ) - ue(x1)>

13



An Example - 1D Value Function Approximation

N .
o Update rule: ), 0 + a3 22 <ue(xgg) . ue(xi))
i=1

Epoch: 1, Iteration: 1

—— approximate solution
15 —— true solution
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An Example - 1D Value Function Approximation

N .
o Update rule: ), 0 + a3 22 (ue(xgg) . ue(xi))
i=1

Epoch: 1, Iteration: 1

—— approximate solution
15 —— true solution

Key point: loss function makes no reference to solution! We
approximate solution using only randomly generated data. 14



Machine Learning with Artificial Neural Networks

Hidden

Input

Output

Figure 3: ANN Example

A neural network is a compositional function that depends on

parameters (weights and biases).
15



An Example: Cell Battery

n =’
u(0,y)=0

-0.3mv

O

ou
M _o
on

u(l,y)=1

PDE: Au = 0 on a unit square (representing a battery).
u(x,y) is the voltage, which jumps when entering/exiting a cell
due to negative resting potential within the cell. 16



Method and Implementation

Loss function:
1 - X 2
N Z ( ugp (X, (z)) VoltChange(X (l)))

—BdryWezghtZ ( POy — UG(P(i))>2

where P are points on boundary and BdryW eight is boundary
weight, a constant.

To approximate real solution, minimize loss by updating ¢
(weights and biases) via gradient descent.

17



Numerical Results

Test Case: 1, Network Architecture: [8, 100, 1], Iteration: 50

1.0 00

18



Summary




Summary

Solves for solution | Grid of points One point Every point Every point
at...

Gains All at once After all walkers At every step of At every step of
information... finish walkers walkers

Requires basis?

No basis functions

No basis functions

Need to choose
basis functions

No basis functions

Best for...

Simple
boundaries, low
dimensions

Complex
boundaries, sol. at
single point

Complex
boundaries, high
dimensions, know
good basis

Complex
boundaries, high
dimensions, don’t
know basis

19



Thank you!

Figure 4: Our Team

20
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